Improved ECO Algorithm Based on Residual Neural Network

نویسندگان

چکیده

Abstract Video target tracking is one of hot fields computer vision, and its application also very extensive. However, due to the complexity variability environment, which brings some challenges research tracking. ECO(Efficient Convolution Operators) Algorithm proposed based on convolutional neural network in three aspects. Firstly, residual ResNet50 adopted instead extract appearance features target, deeper applied obtain more abundant semantic information, so as improve effect algorithm.Secondly, sample space classification strategy improved. Different weights are assigned shallow feature deep feature, make play a important role Finally, method scale estimation improved that better bounding boxes can be estimated with changing. Experimental results show distance accuracy success rate algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Improved BP Neural Network Algorithm Based on Factor Analysis

Back-Propagation (BP) neural network, as one of the most mature and most widespread algorithms, has the ability of large scale computing and has unique advantages when dealing with nonlinear high dimensional data. But when we manipulate high dimensional data with BP neural network, many feature variables provide enough information, but too many network inputs go against designing of the hidden-...

متن کامل

Face Recognition Algorithm Based on Improved BP Neural Network

Face recognition has received wide concern as a hot direction in recognition models. Due to a strong self-adaptive and mapping ability, traditional BP algorithm occupies certain advantages in face recognition, but is has the shortcomings of fast convergence speed and being easy to fall into local optimum in itself. In this paper, an improved BP neural network is proposed aiming at the deficienc...

متن کامل

Traffic Prediction Based on Improved Neural Network

Artificial neural networks and genetic algorithms derived from the corresponding simulation of biology, anatomy. The paper analyzes the advantages and the disadvantages of the artificial neural networks and genetic algorithms. The artificial neural networks and genetic algorithms to be combine in the prediction model. This method is used to predict traffic volume in a road, the accuracy of fore...

متن کامل

An improved genetic algorithm based fuzzy-tuned neural network

This paper presents a fuzzy-tuned neural network, which is trained by an improved genetic algorithm (GA). The fuzzy-tuned neural network consists of a neural-fuzzy network and a modified neural network. In the modified neural network, a neuron model with two activation functions is used so that the degree of freedom of the network function can be increased. The neural-fuzzy network governs some...

متن کامل

Improved Inception-Residual Convolutional Neural Network for Object Recognition

Machine learning and computer vision have driven many of the greatest advances in the modeling of Deep Convolutional Neural Networks (DCNNs). Nowadays, most of the research has been focused on improving recognition accuracy with better DCNN models and learning approaches. The recurrent convolutional approach is not applied very much, other than in a few DCNN architectures. On the other hand, In...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of physics

سال: 2021

ISSN: ['0022-3700', '1747-3721', '0368-3508', '1747-3713']

DOI: https://doi.org/10.1088/1742-6596/1732/1/012081